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Lavenda ( I )  has described how Einstein and Perrin em- 
ployed Brownian motion to confirm an atomic theory of 
matter. Teachers may also use Brownian motion for instruc- 
tion in the classroom and laboratory. This paper will show 
how video recordines of the Brownian motion of tinv oarti- - " .  
clesmay he made, describe a classroom demonstration, cite a 
reported experiment designed to show the random nature of 
Brownian motion, and suggest a student experiment to dis- 
cover the distance that a tinv particle travels as a function of 
time. The depth of the statistical analysis of the data can 
easily he adjusted to the level of the class. 

Recording Brownlan Motion 
A video cassette recording of the projection onto the x-y 

plane of the Brownian motion of a tiny particle was made in 
the followine wav. One drop of a 5% sus~ension of latex 
spheres 1.09irm;n diameteiwas mixed with 3 L of water. A 
d r o ~  of this dilute susoension was placed on a hemacvtome- 
ter that  had line markings 0.05 m i  apart. The suspension 
was covered with a glass slide, and the hemacytometer was 
mounted on a compound microscope that had a trinocular 
head. 

A Petri dish filled with an aqueous solution of sodium 
carbonate was placed over the light source of the microscope 
toahsorh infrared radiation in order to inhibit the formation 
of convection currents that would cause hulk motion within 
the suspension. The stage of the microscope was carefully 
leveled. 

Because the concentration of latex spheres in the suspen- 
sion was very low, i t  was easy to isolate and observe only one 
sphere in the microscope's field of view. However, with only 
one, or perhaps two, spheres in view, it is impossible to 
detect if there is hulk motion in the suspension. 

A Panasonic color camera (model WV-3320) was mounted 
on the microscope, which recorded the movement of a latex 
sphere on a Sony Beta 111111 video cassette recorder (model 
SL-5400). The picture was also simultaneously displayed on 
the screen of a 19-in. NEC Autocolor monitor (model CM- ~~ ~ 

1951A). 
Because the latex ~ar t ic le  is moving alone the verticle axis - - 

as well as in the x-y plane, its image must continuously he 
k e ~ t  in focus hv eentlv turnine the microscope's focus knob. . -  .  en so, the operator must hevery careful to keep the stage 
of the microscope level and fixed in the x-y plane while 
recording the Brownian motion of a particle. 

The markings 0.05 mm apart on the hemacytometer were 
dist,orted on the monitor's screen. A distance of 0.05 mm .~~~~~~~ ~ ~ ~ ~ 

appeared as 178 mmon thescreen's vertical axiiand 191 mm 
on its horizontal axis. This reuresents a distortion of about 
7% and an average magnification of about 3700X. 

The important pedagogical question is "What use can he 
made of video recordings of Brownian motion?" 

Classroom Demon4ralion 
The equipment described above may be employed to show 

the actual Brownian motion of tiny particles to an entire 
class so that all students are able to view the motion simulta- 
neouslv. This would not be possible if each student had to 
ohserve the motion individ"ally through the eyepiece of a 
microscope. Also, the teacher may easily and rapidly change 
the objective lens of the microscope in order to increase or 
decrease the field of view and the magnification of the parti- 
cles displayed on the monitor. In less than a minute, a teach- 
er could remove the hemacytometer in order to change the 
suspensiononit so that the Brownian motion of a suspension 
of carbon black or dye particles in water might he displayed 
on the monitor. 

Students are able to observe several important character- 
istics of Brownian motion in this demonstration. If many 
par~icles are displayed at once, r h e  cmsrle.;~ m h o n  of the 
particles is random. The motion of one par~icle is not atiect- 
i d  by the motion of another particle even if the two particles 
are within one particle diameter of each other. Particular 
narticles will eventuallv move in and out of focus indicatine 
that Brownian motion occurs in three dimensions. Moving 
the suspension up and down along the vertical axis by use of 
the focus knob will allow students to observe that the con- 
centration of particles diminishes with increasing height in 
the suspension. If the particles undergoing Brownian motion 
are changed, i t  is apparent that the rapidity of the motion 
becomes greater as the particles become smaller. 

If, durine a demonstration, the particles appear in concert 
to move slowly toward one side ofthe monit& screen, then 
the particles are undergoing hulk motion in addition to 
Brownian motion. For this reason, a teacher may substitute 
videotape recordings of Brownian motion made under care- 
fullv controlled conditions in place of observine Brownian 
motion directly. The ~ideotap~recording also preserves this 
demonstration so that it can he easilv and confidentlv used 
in future classes. 

The videotape recordings may he temporarily stopped 
(pause) and started again (play) a t  the discretion of the 
teacher. This enahles tracks of these tiny particles to be 
drawn. This is accomplished by taping a transparent acetate 
sheet over the monitor's screen and marking the point of 
origin of the particle's motion on this sheet while the video- 
tape is in the pause mode. The videotape is then begun and 
allowed to run for a designated period of time, say 10 sec- 
onds. At that time the videotape is stopped and the new 
position of the particle is marked on the acetate sheet. One 
could repeat this process a t  equal intervals of time until the 
narticle's imaee leaves the edee of the monitor's screen. 

If the posiiion of the latex particle is marked at  10-s 
intervals for 2 min, the acetate sheet will have 13 points that 
may he connected consecutively by 12 straight lines to give a 
crude representation of the track of the particle. Tracks of 
this typeare often shown in textbooks a<d clearly show the 
fluctuating nature of Brownian motion because no two 

Presented at the 9th Biennial Conference on Chemical Education. 
Bozeman. MT, July 30. 1986. 

Volume 65 Number 12 December 1988 1091 



Table 1. Values lor the Roof-Mean-Square Displacements 
Calculated from the Polynomlals Given in Table i for Varlous 
Values of the Square Root of Tlme Compared to Experimental 

Data 

,VZ (g112) Root-mean-square Displacement b m )  

Expl. linear second third fourth finh 

0.00 0.00 0.00 0.43 -0.07 -0.01 0.00 
3.16 3.60 4.36 3.19 3.97 3.68 3.56 
4.47 5.35 6.16 4.79 5.32 5.34 5.44 
5.46 6.71 7.56 6.21 6.42 6.58 6.66 
6.32 7.65 8.72 7.52 7.44 7.62 7.62 
7.07 8.22 9.75 8.78 8.49 6.61 8.55 
7.75 9.65 10.69 9.99 9.56 9.60 9.53 
8.37 10.46 11.54 11.17 10.71 10.64 10.59 
8.94 11.64 12.33 12.30 11.69 11.75 11.75 
9.49 13.30 13.09 13.44 13.16 13.01 13.06 

10.00 14.23 13.79 14.54 14.50 14.38 14.46 
10.49 15.94 14.47 15.64 15.91 15.91 15.96 
10.95 17.55 15.10 18.70 17.37 17.59 17.50 

tracks are alike. A teacher may make as many of these tracks 
as he or she wishes by cleaning the acetate sheet with a cloth 
dampened with alcohol and repeating the tracking demon- 
stration with another narticle's motion that has been record- 
ed on the videotape. 

Slrnulatlon of Brownlan Motlon 
A student experiment to simulate Brownian motion has 

been reported (2). This experiment employs 12 dice and a 
hexagonal grid in order to simulate the track of a randomly 
movine narticle. The dice are rolled in order to determine 
themoviment of apoint. Straightlines are drawn on the grid 
to connect the oositions of the movinenoint after each roll of 
the dice. The fluctuations that occur in the direction and 
length of the vectors that describe the point's motion are 
clearly shown on the grid. When the tracks of the points on 
the hexagonal grid are compared to the tracks of Brownian 
particles obtained from the videotapes, the similarities are 
unmistakable even though no two tracks are exactly alike. 

Student Experlrnent 
The tracks of many individual particles can he drawn by 

replaying the video recordings of these particles. Microcom- 
outers can readilv oerform statistical calculations on mea- " 

surements made from these tracks. Hence, a student experi- 
ment mav be nerformed todiscover the relationshin between " .  
the root-mean-square displacement of these pakicles and 
time. 

In one experiment the tracks of 21 particles were recorded 
at  24 ' C  by marking the position of each particle every 10 s 
for a duration of 120 s. The radial distances were measured 
from the origin to each of the 13 marked points on every 
track. The averaee root-mean-sauare disolacements at  each 
10-second inter& were calculatkd (first two columns of Ta- 
ble 1) and olotted as a function of the sauare root of time 
(figure, by use of a Lotus 1-2-3 software program. 

110 the data ~ h t t e d  in the figure descrihe a mathematical 
function, and ii' so, what is this Function? Some students may 
feel that these data ~ o i n t s  can be adecluatelv revresented hv 
a linear function, hut others may be skeptical b&ause of thk 
obvious upward curve of these points a t  higher values of 
time. These different opinions must be taken seriously in a 
science class. They can provide an opportunity for teaching 
students about the uncertainties in scientific exoeriments 
and the statistical treatment of data. 

Students can see that the data ooints on the eranh clearlv 
do not lie on a straight line, but h e y  also know-that there [s 
experimental error in every measurement described by these 

Square Root o f  Time 

Table 2. Coefllclents for Various Polynomlals* 

Dearee An A. A, A" A" A= 

linearb +0.00 +1.36 
second +0.43 +0.63 +0.079 
mird -0.074 +is17 -0.17 +o.o15 
foutth -0.0089 +0.82 +0.20 -0.037 +0.0022 
flRh +0.00028 -0.26 +0.89 -0.19 +0.017 -0.00049 

*Pdynomialr havethe form <rms>,"= A. + A + + .  . . + ASXI where x = P'2 

bThis linear l i  was constrained to pars through Vle origin. 

data points except for the one a t  the origin. They know that 
there is approximately a 7% distortion in the image dis- 
olaved on the monitor. that there is an obvious error of 
parklax in marking theposition of the tiny particle on the 
acetate sheet because this sheet lay a few millimeters above 
the actual picture screen of the monitor, and that measuring 
the distance between points marked on the acetate sheet is 
in error by at  least, if not more than, the radius of the 
particle's image on the monitor. After some class discussion 
and thought about the errors in measurements made in this 
experiment, i t  can he estimated that these errors could easilv 
he-10-15%. Consequently, students should realize that ever; 
point on the graph represents an honest measurement, but 
none are the correct representation of natural behavior ex- 
cept for the point at  the origin. 

Students mav select oolvnomial functions to describe the 
natural behavior and pioceed by calculating the coefficients 
for various oolvnomials. For the linear oolvnomial. the lin- 
ear regresscon-formula that is constrainid to make the 
straight line pass through the origin was used because the 
correct function is known to pass through the origin. For 
polynomials of higher degrees, a linear least-squares polyno- 
mial curve-fitting program was used. The calculated coeffi- 
cients for five polynomials are shown in Tahle 2. Values for 
the root-mean-square displacements calculated by use of 
each polynomial are shown in the last five columns of Tahle 
1. 

If the data in Table 1 are examined carefully, the following 
observations and conclusions could he made. The higher 
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polynomials do generate an average root-mean-square dis- 
placement that is closer to the experimental value. For the 
third and higher degree polynomials, the values generated 
differ by about 3% or less from the experimental values. 
However, because we suspect that our data is in error by 10- 
15%, we conclude that these polynomials are not describing a 
law of nature hut are simplv doing a good job of describing - .  
measurements that are known to have errors. The quadratic 
function generates values that can he quickly estimated to 
differ, on an average, by about 5% from the experimental 
values. The auadratic equation also has an intercept that 
does not pass through the origin. The linear function was 
forced to pass through the origin, but the values generated 
by use of this function appear to differ from the experimen- 
tal values by an average of approximately 10% which is 
nearer to our exnectation for the function that describes a 
law of nature. donsequently, in the absence of additional 
data and the existence of an understood risk, we may select 
the linear function as that one likely to describe a law of 
nature. 

Students may now he introduced to the theoretical expla- 
nation for Brownian motion that was derived by Einstein in 
1905. An elementary discussion of this work was reported in 
1908 and is recorded in English (3). The motion of Brownian 
particles in the x-y plane is described by 

where (rms), is the root-mean-square displacement of the 
particle from its origin a t  time, t. D is the diffusion coeffi- 
cient. which denends on the tem~erature. radius of the dif- 
fusing particle,'and the viscosit;of the liquid in which the 
particle is suspended. Students may employ this equation 
and the slope of the linear function to calculate a value of 
0.48 um2/s for the diffusion coefficient of the latex spheres. 

H ~ W  can the students know that this value for the diffu- 
sion coefficient is a realistic one? The Stokes-Einstein law 
gives the relation between these quantities as 

kT D = - 
6 q r  

where k is the Boltzmann constant, T is the absolute tem- 
perature, ? the viscosity of the medium, and r is the radius of 
the narticle. When this eauation is used to calculate the 
diffision coefficient for latex spheres of 1.009 pm diameter 
in water at  24 'C. a value of 0.43 pm2 is obtained. The value 
ohtained from the slope of the' experimental line is 12% 
higher than this calculated value. 

If an experimental value for the diffusion coefficient a t  24 
OC matched that calculated from the Stokes-Einstein law, 
the slope of the experimental line would have to be 1.32 @m/ 
sli2 instead of the value of 1.38 p m l ~ " ~  that was ohtained 
from the linear function. Comparing these two slopes by use 
of the "Student t-test" (4, 5) provides a way to instruct 
students in the statistics of a straight line and a criterion to 
pass judgment on the selection of the linear function to 
describe a law of nature. 

The estimated standard deviation for the slope of the 
straight line passing through the origin (1.38 p m l ~ ' ~ ~ )  was 
calculated to he 0.041 @ m l ~ I / ~ .  When the difference in the 
two s l o ~ e s  was divided bv this estimated standard deviation, 
a value'for t of 1.47 was obtained, which is smaller than the t 
value of 1.78 at  the 90% confidence level for 12 degrees of 
freedom. We can then conclude that more than 10% of the 
samples selected from the same population would have ex- 
hibited slopes that differed more than these two, and the 
null hypothesis is accepted. Hence, students may use video 
recordings of the tracks of latex particles to show that the 
motion of these particles is described by Einstein's equa- 
tions for diffusion. 

Students may obtain an indication of the probable error 
made in measuring the diffusion coefficient by calculating 
the propagation of the probable errors that were made in 
their measurements (6). This would produce a statistically 
calculated measure on either side of (he mean in which half 
the determinations of the diffusion coefficient would he ex- 
pected to lie. To do this, the video recording of the same 
latex particle may be rerun several times, and its track may 
he plotted each time. These independently plotted tracks, 
which ideally should he identical, may he analyzed to deter- 
mine the average standard deviations in measuring both 
time and mean square displacements. These standard devi- 
ations were found to be 0.56 s for time measurements and 25 
pm2 for mean-square displacements. 

From an analysis of the movement of the 21 particles for 2 
min, the average of the mean-square distances was found to 
be 115 pm2 and the average time was obviously 60 s. These 
values were used to calculate aprohable error of 0.071 pm2/s, 
which is 15% of the experimentally determined value for the 
diffusion coefficient (0.48 pm2/s).~ 

Teachers may wish to direct students to the work of Jean 
Baptiste Perrin (71, who determined Avogadro's number in 
1908 by measuring the distribution of tiny particles in a 
gravitational field. Perrin reported a value of 7.06 X loz3, 
which is in error by 17%. In 1926, Perrin was awarded the 
Nobel Prize in physics for this work. 

Acknowledgment 
The author kindly acknowledges the assistance of Bobby 

Jones of the Department of Biology at  Rhodes College for 
the use of his video equipment and laboratory, David 
Vaught for the use of his software program to calculate 
coefficients for the polynomials, and Uri Haber-Schaim for 
his critical comments on the manuscript. 

Literature Cited 

Volume 65 Number 12 December 1988 1093 


